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ABSTRACT

Relative reactivities and absolute rate constants of the reactions of haloarenes with i-PrMgCl 3 LiCl were investigated in THF at 0 �C. The rate of the
halogen�magnesium exchange decreases in the series ArI > ArBr > ArCl (relative reactivities: 1011:106:1). Preliminary experiments show that the
p-tolylsulfinyl group is exchanged slightly faster than iodide, while a tosyl group is exchanged at least 104 times more slowly than a bromide.

Since Grignard’s discovery that organometallics of the
general formulaRMgXcanbe preparedby the reactions of
alkyl halides withmagnesium inEt2O,1 organomagnesium
reagents have become important reagents for the forma-
tion of C�C and carbon heteroatom bonds.2 Currently,
the most important methods for the preparation of organo-
magnesium compounds are (1) direct metalation of organic
halides with metallic magnesium;3 (2) deprotonation of CH-
groups with strong Mg-bases;4 (3) transmetalation of other

organometallics;5 and (4) halogen�magnesium exchange,
e.g., by reactions of aryl halides with alkylmagnesium
halides.6�8

Althoughhalogen�magnesiumexchange reactions have
already been observed in the early 1930s,6 they have not
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been widely used until recently. One of us7 demonstrated
the applicability of this method for the preparation of
functionalized organomagnesium reagents that cannot
be obtained by conventional processes. In particular,
i-PrMgCl 3LiCl was found to be a valuable reagent, as it
exhibits a dramatically increased reactivity in halogen�
magnesium exchange reactions compared to i-PrMgCl or
(i-Pr)2Mg.8

Recently, we investigated the kinetics of the reactions of
substituted bromoarenes toward i-PrMgCl 3LiCl in THF
at 0 �C9 and demonstrated that the rates of the bromine�
magnesiumexchange reactions are acceleratedby electron-
withdrawing substituents in the aromatic ring. The sub-
stituent effects decrease with increasing distance between
bromine and the substituent under consideration (para<
meta , ortho). We now report how the rates of the
halogen�magnesium exchange reactions depend on the
nature of the halogens and how these data can be used for
predicting the regioselectivities of halogen�magnesium
exchange reactions of arene derivatives bearing different
leaving groups.
The relative rates of halogen�magnesium exchange

reactions were determined by competition experiments,
where substoichiometric amounts of i-PrMgCl 3LiCl
(typically 0.33 to 0.5 equiv) were added to mixtures of
two different haloarenes in THFat 0 �C.At various times,
the composition of the reaction mixture was analyzed by
gas chromatographic determination of the product ratios
obtained by quenching either with iodine ([P10]/[P20]) or
with methanol ([P1]/[P2]) (Scheme 1).

We reported9 that 2-cyanophenylmagnesium chloride,
which formed rapidly and nearly quantitatively from
2-bromobenzonitrile and i-PrMgCl 3LiCl, does not under-
go an exchange with 4-methoxybromobenzene (0 �C, 8 h),
in line with the unfavorable thermodynamics of this reac-
tion (Scheme 2). On the other hand, 4-methoxyphenyl-
magnesium chloride was observed to undergo a slow ex-
change with 2-bromobenzonitrile to yield approximately
2%of 2-cyanophenylmagnesium chloride and 4-methoxy-
bromobenzene within 8 h at 0 �C (Scheme 2).
As this reaction was slow compared with the reactions

of the bromoarenes with i-PrMgCl 3LiCl, we had con-
cluded that the ratios [P1]/[P2] or [P10]/[P20] reflect the
ratios k1/k2 defined in Scheme 1.
However, in some cases (e.g., X=I) the product ratios

[P1]/[P2] or [P10]/[P20] were found to depend on the
reaction time, indicating that the product ratios are
no longer kinetically controlled. Thus, the ratio k1/k2
(Scheme 1) cannot simply be derived from the prod-
uct ratios when aryl derivatives Ar�X are treated with
i-PrMgCl 3LiCl.
Figure 1 shows that 4-methoxyphenylmagnesium chlo-

ride reacts slowly with 1-iodo-2-methylbenzene in THF at
0 �C reaching an equilibrium mixture of arylmagnesium
reagents and aryl iodides within 1 h. An analogous ob-
servation was made when 2-tolylmagnesium chloride was
treated with 1-iodo-4-methoxybenzene under the same
conditions (Figure 2).
Both figures show that the exchange reaction between

the corresponding arylmagnesium reagents and iodoar-
enes require about∼1 h for completion, and the degree of
conversion is low within 5 min. In line with this observa-
tion, the ratio of arylmagnesium halides obtained by the
fast reaction of a mixture of two competing iodoarenes
with a substoichiometric amount of i-PrMgCl 3LiCl was
almost the same after 1 and 5 min.
If the exchange between an aryl iodide and an aryl-

magnesium halide is slow compared with the initial
reaction, the relative reactivities of R1 and R2 toward
i-PrMgCl 3LiCl can be expressed by eq 1,10 as reported
previously.9

K ¼ K1

K2
¼ log([R1]0=[R1]t)

log([R2]0=[R2]t)
ð1Þ

Substitution of [R1]0 and [R2]0 by the expressions [R1]0
= [R1]t þ [P1]t and [R2]0 = [R2]t þ [P2]t (mass balance)

Scheme 1. Determination of the Effect of Leaving Groups on
the Rates of Halogen�Magnesium Exchange Reactions

Scheme 2. Exchange Reactions between Aryl Grignard Reagent
and Aryl Bromide
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yields eq 2, which calculates the competition constant κ
from the ratios [P1]t/[R1]t and [P2]t/[R2]t, which were
determined by gas chromatography.

K ¼ log(1þ [P1]t=[R1]t)
log(1þ [P2]t=[R2]t)

ð2Þ

Eachof the six bold-printed aryl halides shown inFigure 3
was subjected to competition experiments with several

other aryl halides, to give the 10 competition constants κ11

illustrated in Figure 3. The combination with the pre-
viously reported relative reactivities of differently sub-
stituted bromoarenes9 and solving the resulting overde-
termined set of linear equations (eq 3) by least-squares
minimization yielded the krel values listed in the left
column of Figure 3.

log K ¼ log ka � log kb ð3Þ
As shown in previous work,9b second-order rate con-

stants for several bromine�magnesium exchange reactions
have been measured directly, which allows us to estimate
absolute rate constants for other aryl halides by multiplying
the krel values (krel= 1.0 for bromobenzene) with 6.0� 10�6

M�1 s�1. In this way, we have calculated the half-reaction
times12 listed in Figure 3 for the halogen�magnesium ex-
change in THF solutions which are 1M in aryl halide and 1
M in i-PrMgCl 3LiCl, to give chemists an idea of the time
needed for a specific halogen�magnesium exchange.
Though the environment of the halogens in the three an-

alogously substituted bromo- and iodobenzenes (Scheme 3,
top) differs significantly, iodine is always exchanged

Figure 3. Relative reactivities of haloarenes toward i-PrMgCl 3LiCl
in THF at 0 �C and τ1/2 for 1 M solutions (PhBr = 1.0).

Figure 1. Time-dependent concentrations of 4-methoxyphenyl-
magnesium chloride (O) and 2-tolylmagnesium chloride (Δ)
obtained by treatment of 4-methoxyphenylmagnesium chloride
(starting concentration = 0.257 M) with 1-iodo-2-methylben-
zene (starting concentration = 0.418 M) in THF at 0 �C.

Figure 2. Time-dependent concentrations of 4-methoxyphenyl-
magnesium chloride (O) and 2-tolylmagnesium chloride (Δ)
obtained by treatment of 2-tolylmagnesium chloride (starting
concentration = 0.286 M) with 1-iodo-4-methoxybenzene
(starting concentration = 0.262 M) in THF at 0 �C.
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6 � 104 times faster than bromine, which is, therefore,
considered to be a typical I/Br ratio. The lower two entries
of Scheme 3 show that in, 2-halobenzotrifluoride and
2-halothiophenes, the Br/Cl ratio is in the same order of
magnitude (kBr/kCl ≈ 106) which we consider an approx-
imate value for this pair of halogens.

Attempts to determine the arylsulfinyl�magnesium
exchange rates of bis(p-chlorophenyl)sulfoxide and bis-
(p-tolyl)sulfoxide by competition experiments, as de-
scribed in Scheme 4, did not yield reproducible results.
Probably the aryl sulfoxides are so reactive, i.e., the
arylsufinyl group is exchanged so fast, that the corre-
sponding competition constants κ depended on the rate
of mixing (macroscopic diffusion control13). Though it
is not possible to determine precise exchange rates, the
approximately 3-times higher reactivity of bis(p-tolyl)-
sulfoxide compared with p-iodoanisole indicates that
the exchange rate of the p-tolylsulfinyl group is of
similar magnitude as that of iodine.14

No exchange reaction between p-cyanophenyl tosylate
and i-PrMgCl 3LiCl was observed within one day. By

comparison with τ1/2 in Figure 3, one can, therefore,
conclude that krel of p-cyanophenyl tosylate in the listing
of Figure 3 must be smaller than 10�1; i.e., tosylate is
exchanged at least 104 times more slowly than a bromide.
This result is consistent with previously reported selective
exchanges of bromide in the presence of tosyloxy groups
(Scheme 5).15

In summary, the qualitatively known increase of
halogen�magnesium exchange rates in the order ArCl <
ArBr < ArI has been quantified as 1:106:1011 for the reac-
tions of haloarenes with i-PrMgCl 3LiCl in THF at 0 �C. If
one assumes that further substituents have similar effects on
iodide�magnesium and chloride�magnesium exchange
reactions as previously reported for bromide�magnesium
exchange reactions9 (the data in Scheme 3 support this view),
one can combine the data in this work with the previously
reported substituent effects to predict the most likely site of
exchange in functionalized polyhalogenated arenes.
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Scheme 3. Effect of Different Halogens on the Relative Rates of
Halogen/Mg Exchange: Data from Figure 3 and Refs 9b and 9c

Scheme 4. Determination of Relative Arylsulfinyl�Magnesium
Exchange Rates

Scheme 5. No Exchange Reactions between ArOTs and
i-PrMgCl 3LiCl
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